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Abstract. Spatial photonic Ising machines (SPIMs) are promising computation devices that can be used to find
the ground states of different spin Hamiltonians and solve large-scale optimization problems. The photonic
architecture leverages the matrix multiplexing ability of light to accelerate the computing of spin Hamiltonian
via free space light transform. However, the intrinsic long-range nature of spatial light only allows for
uncontrolled all-to-all spin interaction. We explore the ability to establish arbitrary spin Hamiltonian by
modulating the momentum of light. Arbitrary displacement-dependent spin interactions can be computed
from different momenta of light, formulating as a generalized Plancherel theorem, which allows us to
implement a SPIMwith a minimal optical operation (that is, a single Fourier transform) to obtain the Hamiltonian
of customized spin interaction. Experimentally, we unveil the exotic magnetic phase diagram of the generalized
J1-J2-J3 model, shedding light on the ab initio magnetic states of iron chalcogenides. Moreover, we observe
Berezinskii-Kosterlitz-Thouless dynamics by implementing an XY model. We open an avenue to controlling
arbitrary spin interaction from the momentum space of light, offering a promising method for on-demand
spin model simulation with a simple spatial light platform.
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1 Introduction
The collective behavior of numerous natural and social systems—
ranging from phase transitions in matter to neural network dy-
namics and financial market volatility—can be described by a
universal spin model that originated in physical science to study
magnetism.1 The Hamiltonian of a spin model is given by Hr ¼−PijJijSi · Sj, where Jij is the interaction strength between the
i’th and the j’th spin. The spin S is a unit vector, and Jij is a
function of spin-spin displacement (rij). The spatial profile of
JðrijÞ plays a crucial role in determining the system’s physical
properties. Short-range interactions regulate critical behavior
and lead to distinct phase transitions,2 whereas long-range inter-
actions are likely to induce correlated states for quantum entan-
glement. Particularly, tuning the interaction strength among

several neighboring terms in JðrijÞ can give rise to exotic mag-
netic complexity,3,4 replica symmetry breaking,5,6 or unusual topo-
logical effects.7–9 Therefore, exploring spin systems of a general
JðrijÞ has been actively pursued both theoretically and experi-
mentally, for the potential to unravel novel effects and to solve
combinatorial optimization problems.10

Optical platforms offer abundant opportunities for simulat-
ing spin models via diverse light-matter interactions, such as
nonlinear optical effects,11,12 spontaneous parametric down-
conversion,13,14 lasing,15–17 and exciton-polaritons.18,19 A typical
scheme of the optical spin model is supported by an array of
resonant structures, such as coupled waveguides20,21 or micro-
cavities,18,22 where the JðrijÞ is realized by the field overlapping
between adjacent optical modes through the leakage of evanes-
cent fields. This strategy stands for a group of experimental
efforts that aims to construct spin interactions from real-space
field overlapping. However, implementing a general JðrijÞ*Address all correspondence to Bo Wang, wangbo89@sjtu.edu.cn
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necessitates intricate structure design and fabrication, which in
turn restricts the functionality and scalability of the spin system.
In addition to real-space approaches, theoretical analysis of spin
models can be significantly enriched by examining the momen-
tum spectrum of JðrijÞ.23 For instance, the critical behavior of a
short-range interaction corresponds to a second momentum (k2)
in the Fourier transform of JðrijÞ.24 Experimentally, the Fourier
transform serves as a powerful tool in various spatial light
calculations, including image processing,25 spatial differentia-
tion,26–28 and convolution.29,30

Lately, a spatial photonic Ising machine (SPIM) has been re-
ported as a promising optical architecture for solving large-scale
spin models.31 Leveraging the parallel processing of free space
light, the optical circuit of the SPIM is well-suited for linear
matrix computation with a low power consumption and high
operation speed independent of the spin model scalability.32

The proposed SPIM utilizes the central spot of the momentum
space corresponding to a specific all-to-all spin interaction.
Based on the primitive version, several upgraded SPIMs have uti-
lized gauge transformation33–35 and multiplexing techniques36–39

to generalize the spin interaction functions. In general, the meth-
ods stemming from the central momentum of light leave the entire
momentum space unexplored. Because of that, the generalization
of spin Hamiltonian requires extra computational resources,
which can be achieved through additional optical measurements,
an increased number of wavelengths, or a larger spatial area of the
spatial light modulator (SLM) chip. The required resources rely
on the complexity of spin Hamiltonian. For example, for nearest-
neighboring spin interaction with full-rank Hamiltonians, the re-
quired additional resource for computing the full Hamiltonian
grows linearly with the number of spins.

In this work, we introduce a momentum-space-modulated
spin Hamiltonian, which allows us to implement arbitrary
rij-dependent (displacement-dependent) interactions JðrijÞ in
a simple spatial light platform. As examples, we perform two
groups of experiments to show the ability of our optical simu-
lator. The first experiment applies a J1-J2-J3 Ising spin model
by tuning the interaction strength ratio among the nearest neigh-
bor (NN), next-to-NN, and 3rd NN terms, demonstrating dis-
tinct magnetic ground states that occur in iron chalcogenides.
The second experiment performs optical annealing for the
XY spin model with NN interaction, exhibiting a Berezinskii-
Kosterlitz-Thouless (BKT) dynamics that is governed by vortex
proliferation. These experiments exhibit high calculation preci-
sion, with application potentials to solve general spin models
using a simple spatial light architecture.

2 Principles and Methods
We establish a general real-and-momentum space correspon-
dence of spin Hamiltonians (see Note 1 in the Supplementary
Material for details)

Hk ¼ −X
ij

JðrijÞSi · Sj ¼ −
ZZ

VðkÞIðkÞdkx dky: (1)

Here, the sum is taken over all spin pairs, including self-inter-
actions. The modulation function VðkÞ ∼P

ijJðrijÞeik·rij corre-
sponds to the Fourier transform of JðrijÞ, and IðkÞ is the
normalized momentum-space intensity of light. The unit vector
S is mapped to the phase of the optical field E ¼ expðiφÞ via the
relationship of S ¼ ðcos φ; sin φÞ. It results in an XY model for

φ ∈ ð−π; π� and an Ising model for φ ∈ f0; πg. Equation (1)
reveals a general correspondence between a two-body spin
Hamiltonian and a VðkÞ-modulated diffraction of light. The in-
sertion of VðkÞ in the momentum space is equivalent to applying
a corresponding spin interaction function JðrijÞ for the real-
space spins. Specifically, for VðkÞ ¼ 1, Eq. (1) reduces to the
Plancherel theorem for zero spin interaction. For VðkÞ ¼ δðkÞ,
it maps to a specific all-to-all spin interaction. Therefore, in this
work, different spin Hamiltonians, such as short-range interac-
tion, long-range interaction, and arbitrary JðrijÞ, can be feasibly
implemented here by applying different VðkÞ in the momen-
tum space.

The experiment scheme is illustrated in Fig. 1(d). A plane
wave laser impinges onto a phase-only SLM, generating a
square array of optical fields with uniform amplitude and arbi-
trary phases. The phase of light is mapped to the in-plane spin
vector in the same way as we have mentioned before [Figs. 1(a)
and 1(b)]. The lens transforms the real-space light into the
Fourier spectrum IðkÞ, which is captured by a camera (see
Note 2 and Fig. S1 in the Supplementary Material). The spin
Hamiltonian Hk is experimentally obtained by measuring the
VðkÞ-weighted light intensity. Alongside the optically com-
puted Hamiltonian, the feedback is assisted by the computer
system, which generates random phases via a Markov chain,40

and accepts new phase configurations by comparing the succes-
sively observed Hk according to the Metropolis algorithm.41

This iterative process ensures that light evolves towards smaller
Hk.

3 Results

3.1 J1-J2-J3 Model Experiments

The J1-J2-J3 model plays a pivotal role in revealing the intricate
magnetism complexity of iron chalcogenides.3,42,43 The
Hamiltonian of J1-J2-J3 model is given byHr¼−PNNJ1Si·Sj−P

2NNJ2Si ·Sj−P3NNJ3Si ·Sj. Here, the first sum is taken over all
NN spin pairs, the second sum over next-to-NN spin pairs, and so
on. For simplicity, we set J1 ¼ −1, and we define two parameters
to describe the interaction ratios, R1 ¼ J2∕J1, and R2 ¼ J3∕J1,
akin to the notation in Ref. 4. The theoretically calculated phase
diagram for the J1-J2-J3 model at T ¼ 0 is depicted in Fig. 2(a).4

Here, T is the temperature normalized by J1∕kB. There are four
types of states separated by linear boundaries determined by the
interaction ratios R1 and R2. Among them, the antiferromagnetic
ground state is the most common one that can be achieved with-
out considering J2 and J3. As R1 and R2 increase, distinct phases
emerge, such as the double-stripe pattern (4 × 4) and staggered-
dimer pattern (4 × 2) [Fig. 2(b)]. These patterns are important
ground-state candidates for the iron chalcogenides.

We apply the J1-J2-J3 model to our simulator to solve the
ground states, starting with the case of ðR1; R2Þ ¼ ð0.5; 0.9Þ.
The interaction function JðrijÞ and the Fourier transform
VðkÞ are calculated and shown in Fig. 3(a), without applying
periodic boundary conditions. A 10 × 10 random spin configu-
ration is initially encoded onto the SLM, as depicted in Fig. 3(b).
Meanwhile, the diffraction of light in the momentum space is
captured by the camera. Because of the binary phase encoding
for the Ising model, the diffraction in the momentum space is
centrosymmetric with IðkÞ ¼ Ið−kÞ. To reach the ground state
without being trapped in a local minimum, we have divided the
annealing process by 10 temperatures from T ¼ 1.8 to T ¼ 0
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[Fig. 3(e)]. At every temperature, we run 2000 iterative steps to
update the phase configuration to reach thermal equilibrium (see
Note 4 and Figs. S8 and S9 in the Supplementary Material).
During this process, the experimentally obtained Hk is depicted
in Fig. 3(e). For high-T cases, theHk is overall decreasing as the
iteration continues, but it also exhibits strong fluctuation due to
the simulated thermal effect from the Metropolis algorithm.
At around T ∼ 1, a minimal Hk is reached in good agreement
with the theoretically predicted critical temperature in Fig. 3(f).
The annealing process is terminated after 2 × 104 iterative steps
and a double-stripe pattern (4 × 4) is observed in Fig. 3(c),

which agrees with the theoretical prediction in Fig. 2(b). The
momentum space intensity IðkÞsol.. The ground state is shown
in the lower panel of Fig. 3(c), where we see four diffraction
spots. During the experiment, a linear relationship between
Hk andHr is observed to verify Eq. (1), as depicted in Fig. 3(d).

Next, we systematically vary the interaction ratios R1 and R2

to uncover the complete phase diagram in Fig. 2. Particularly,
the antiferromagnetic (AF) state [Fig. 4(a)], single-stripe
[Fig. 4(d)], and double-stripe [Fig. 4(c)] are all in perfect agree-
ment with the theoretical predictions. For ðR1; R2Þ ¼ ð0.5; 0.3Þ,
the solved state is slightly higher than the predicted ground state

0.5 10
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(2×2)

SAF
(2×1)

AF (2×2)

(4×2) (4×4)
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(b)(a)

π

0

0.5

2R

1R

Fig. 2 Phase diagram of a J1-J2-J3 model at T ¼ 0. (a) The predicted phase diagram at T ¼ 0 as
a function of R1 and R2. The red dots denote the locations where we conduct experimental dem-
onstrations. (b) The ground states correspond to the four regions in panel (a). AF, antiferromag-
netic state; SAF, super-antiferromagnetic state; the notation (2 × 2) means that the unit cell of the
ground state is composed of a 2 × 2 spin array. The state (4 × 2) is also known as the staggered-
stripe pattern, (2 × 1) is the single-stripe pattern, and (4 × 4)s are the double-stripe pattern.

(a) (b) (c)

(d) (e)

Fig. 1 Schematic of the optical spin model simulator. (a) The spin array is represented as the
phases of light. The spin-lattice constant is Λ, and the size of the array is L × L. (b) An example
of the spin interaction function with only the NN term. The black arrows represent the XY spin
vectors mapped to the phases of light. (c) The Fourier transform V ðkÞ of NN interaction function.
(d) Simplified experimental setup. A plane wave laser beam (wavelength of 532 nm) is phase-
modulated via a reflective SLM, collected by a lens, and detected by a CMOS camera in the mo-
mentum space (Fourier plane). Feedback is implemented by a computer for data processing, cal-
culating the Hamiltonian, and updating the phase distributions. (e) An example of light momentum-
space intensity distribution captured by the camera.
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due to the competitive interaction of the staggered-stripe pattern
[Fig. 4(b)]. The newly observed state for ðR1; R2Þ ¼ ð0.5; 0.9Þ is
a mixture of two cases, which is different from that in Fig. 3(c).
This phenomenon arises because of the ground state degeneracy
because random flips during optical annealing can stochastically
choose one spin distribution over another, leading to a different or
mixture of ground state configurations. From the experimental
results, we can see that as VðkÞ modulates the flow of light, it
does not fix the spatial profile of the final IðkÞ. Therefore, there
is no target image as proposed in Ref. 31 because the Hamiltonian
is defined by a real-valued number from Eq. (1), rather than an
intensity distribution. More importantly, a single target image
cannot map to all ground states of a spin system, especially
for a frustrated spin system that has many degenerated modes.

3.2 BKT Dynamics

We extend the use of our simulator to solve an XY model by
extending the spins as quasi-continuous variables. A well-
known phenomenon from the XY model is the BKT phase tran-
sition, which is a critical phenomenon characterized by the
number of vortices.44 For simplicity, we consider a ferromag-
netic NN interaction that is reduced from the J1-J2-J3 model

by setting J1 ¼ 1 and J2 ¼ J3 ¼ 0. Practically, an SLM can
only generate discrete phases. Therefore, we utilize a q-state
clock model45,46 to approach the XY model by dividing a con-
tinuous 2π phase into q levels. In our experiments, we encode an
array (20 × 20) of random phases onto the SLM with q ¼ 8.
Typical phase distributions at different temperatures are shown
in Fig. 5(a). It can be seen that the high-T system is strongly
affected by thermal noise, and the phases change abruptly be-
tween neighboring spins. When the system is gradually cooling
down, random phases tend to be collinear with each other by the
NN spin interaction. The topological phase transition is charac-
terized by the evolution of vortex number (Nv) as a function of
T, as depicted in Fig. 5(b). The Nv crossover occurs around
T ¼ 1, agreeing with the numerical calculation (critical temper-
ature Tc ∼ 0.9). Meanwhile, we captureHr as a function of T, as
presented in Fig. 5(c). The Hamiltonian of the XY system re-
mains at a temperature of T ≈ 0.5, indicating the optical noise
level of q ¼ 8 model. In the q-clock model, the larger the value
of q, the more susceptible the system is to noise. This is because,
in a random process, a larger q corresponds to a smaller phase
shift for each spin pixel (2π∕q), resulting in a smaller variation
in relative intensity in momentum space. Notably, this noise can
be reduced by using a different photodetector.
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Fig. 3 Optically solving a typical ground state of the J1-J2-J3 model. (a) The spin-interaction func-
tion Jðri j Þ for ðR1;R2Þ ¼ ð0.5; 0.9Þ. The dots array stands for the locations of spins. The colormap
for Jðri j Þ is represented by taking one of the spins at ri ¼ 0. The V ðkÞ is the Fourier transform of
Jðri j Þ, with V ðkÞ ∼P

i j Jðri j Þeik·ri j . Panels (b) and (c) are the phase distributions (upper panel) and
corresponding momentum-space intensity distributions (lower panel) for an initial spin distribution
(b) and the solved spin configuration (c). (d) The recorded Hr -Hk during the optical annealing
(dots). All experimentally measured Hk are divided by the minimal (−Hk ) to obtain the normalized
values. The black line is a fitted result, and the black arrow indicates the evolution direction. (e) The
observed Hk during optical annealing. (f) Hr as a function of T . The dots are experimental results,
the curve is the averaged simulation result, and the shaded area is the simulation variance from
statistics. Note that Hr is normalized by the number of spin-spin interactions, and we have set the
Boltzmann constant as kB ¼ 1.
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At last, we perform a quenching experiment to showcase
the out-of-equilibrium dynamics of the XY spin system. To
do that, we start with a random phase distribution and set
T ¼ 0. The quenching dynamics evolve through a coarsening
process revealed in the Hk curve presented in Fig. 5(e)47 (see
Note 6 and Figs. S11–S14 in the Supplementary Material).
The final spin configuration is trapped in a typical vortex-pair
state as shown in Fig. 5(d).

4 Discussion
In summary, we have demonstrated an optical simulator to find
the ground states of spin models with distinct displacement-de-
pendent spin interactions by exploiting the momentum-space
modulation of light. Although spin encoding relies on real-space
optical phases, the spin interaction is governed by the modulated
function VðkÞ in momentum space. Remarkably, our approach
allows us to extract different Hamiltonians from a single

optical measurement. Compared with previous SPIMs, which
inevitably increase the computing steps for complex spin inter-
actions or complicate the optical system, our system maintains
a constant computing time consumption for different spin
Hamiltonian from a single Fourier transform without sacrificing
the scalability of primitive SPIM.

Currently, we have utilized linear optics to demonstrate two
important physical phenomena, including the complex ground
states from the J1-J2-J3 model, and the BKT transition from the
XY model. It has been shown that a quadratic spin interaction
can be realized using nonlinear optical effects,48,49 which can be
combined with our moment-space modulation method to imple-
ment a J1-J2-J3-K model3 to show the magnetism complexity of
iron-based superconductors. Moreover, the implementation of
an XY model is a critical step to generalize optical simulators
with continuous spin variables adapting a wider group of
combinatorial optimization problems. Leveraging the versatile

(a) (b) (c) (d)

Fig. 4 Experimental demonstrations for the J1-J2-J3 model phase diagram with optical momen-
tummodulations. From the top to the bottom panels: the spin-interaction function Jðri j Þ, the Fourier
transform V ðkÞ, the solved ground state φðrÞsol., and the corresponding diffraction image IðkÞsol..
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multiplexing technique of optics, our system can be potentially
utilized to realize asymmetric or nonreciprocal interactions,
such as the Dzyaloshinskii–Moriya50,51 and Haldane interactions
to simulate nontrivial topological effects. For example, we can
introduce asymmetric or random spin locations onto the SLMs.
This allows for the implementation of asymmetric or arbitrary
spin-spin interactions Jij, thereby broadening the functionality
of our SPIM (Note 8 and Fig. S16 in the Supplementary
Material). Moreover, the architecture of our spin model simu-
lator is compatible with intracavity optical systems.52–54 In this
sense, VðkÞ can be performed by SLMs or high-performance
metasurfaces55–58 that are placed in the momentum plane of
an intracavity system with coupled lasers or exciton-polaritons.
As proof-of-demonstrations, we utilized a simple annealing

algorithm in this work. In the near future, optimization algo-
rithms adapting to the SPIMs59 and field programmable gate
arrays60 can be applied to enhance the computation performance
of our simulator for better application purposes.
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Fig. 5 Observation of BKT dynamics. (a) Observed spin distributions at different temperatures.
(b) The number of vortices as a function of T . The dots are experimentally extracted from panel (a),
and the curve is an averaged simulation result, with a statistical variance denoted as the shaded
area. (c) Observed Hr as a function of T . (d) The observed vortex-pair state from quenching. The
curved black arrows indicate the opposite signs of topological charges. (e) The experimentally
recorded Hk during quenching. The inset shows the observed Hk − Hr correspondence.
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